
Programming Languages,
Graphs, and more!

What was your favorite part about working on your
final project?

PollEv.com/cs106bpolls

https://pollev.com/cs106bpolls

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

Roadmap

Life after CS106B!

real-world
algorithms

Core
Tools

User/client
Implementation

Today’s
questions….by
popular vote!

Why is programming
language design like high
fashion?

How can we represent
real-world systems of
connected components?

How do you start your own
C++ projects?

Today’s
topics

1. Programming Languages

2. Graphs

3. Making your own C++
projects

Programming Language
Design

C++ is a “a general-purpose programming language”
with “object-oriented, generic, and functional

features”

What does that mean?
Why is C++ this way?

What were the alternatives??

There are better alternatives to C++YES THERE WERE
ALTERNATIVES

Shout out to Will Crichton who let us adapt
the following slides from CS242!

https://willcrichton.net/

Guess the most popular programming language
(for professional developers) in 2020

It’s Javascript! (Stack Overflow, 2020)

https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-wanted

Software ecosystems are complex

Guess the most popular programming
language in 1952

None! Only assembly languages

And before that… raw numeric machine codes!!!

How did we get to 2022?

How did we get here? (C++, 1979)

How did we get here? (C, 1972)

How did we get here? (1972)

Hey! Week 8 you now understands what it
means for C++ to be C but with classes!
😎

How did we get here? (C, 1972)

How did we get here? (B, 1969)

How did we get here? (Algol, 1959)

Type, variables,
for-loops, dynamic
arrays,
while-loops,
if-then-else, call
by ref vs value…

All things we still
use!

How did we get here? (Algol, 1959)

How did we get here? (Fortran, 1957)

The starter code:

Fortran… kind of looks familiar!

The big ideas in our
programming languages
haven’t really changed since
1958.

statements, variable assignment, for
loops, classes, and so on

There are better alternatives to C++It didn’t need to be this way!

There are better alternatives to C++And in fact, it hasn’t!

Alonzo ChurchAlan Turing

What do you think this does? What do you observe?

Credit

https://github.com/harrisi/stack/blob/master/stack.rkt

Church languagesTuring languages

Inspired by compurers
Computation as operations on a
machine

Inspired by math!
Computation as mathematical
functions

Church languagesTuring languages

● Focus on practical
connection to computers
○ Make hardware first,

then design software
abstractions around
that

○ How does data get
stored?

○ What is the order of
execution (control of
flow)?

● Focus on mathematics
○ Think through

abstractions first. What
is the “mathematical
essence of a function”
first?

○ What is a function?
○ How can we formally

define functions?
○ How can we formally

define variables?

Programming paradigm: a way we cluster
languages by a combination of programming

style and language behavior

Key idea

Functional paradigmImperative paradigm

Object-oriented paradigm

How do we compare across
languages?

What should we compare across
languages?

Are these two types of languages
equally powerful?

Church Turing Thesis: Anything that you
could compute with a Turing Machine you

could compute with lambda calculus.

Key idea

Turing complete: equivalent computational
power to a Turing machine…aka any

algorithm could be implemented

Used as a benchmark for what kind of stuff
you can do with a programming language

Key idea

Turing complete: equivalent computational
power to a Turing machine…aka any

algorithm could be implemented

Used as a benchmark for what kind of stuff
you can do with a programming language

Key idea

Java
C++

Python C

Which of these are NOT Turing complete?

Minecraft

Scratch

Excel

HTML

Which of these are NOT Turing complete?

HTML

● Describes data, not
computation

● Doesn’t allow you to
execute for-loops, etc.
○ Not every algorithm

can be implemented
using HTML

Are these two types of languages
equally easy to use?

Other ways to compare
programming languages

Credit: Alex Aiken

Tradeoffs

Safety

Productivity

Performance

Credit: Alex Aiken

Safety

Productivity

Performance

Coq C

Java, C++

Rust

MatlabML,
Haskell

Python

Tradeoffs

Design consideration: Productivity

Productivity:
● Do we have big, easy-to-use

building blocks (aka libraries) to
get to powerful programs?

● Is this programming language
easy-to-use and read?

Productivity: libraries to build on top of?

python takes the cake!

Productivity:
● Do we have big, easy-to-use

building blocks (aka libraries) to
get to powerful programs?

● Is this programming language
easy-to-use and read?

What percentage of time do
programmers spend actually writing
code when they’re programming?

ONLY 5% 👀👀

Productivity:
● Do we have big, easy-to-use

building blocks (aka libraries) to
get to powerful programs?

● Is this programming language
easy-to-use and read?

Design consideration: Safety

Safety: reduce vulnerabilities,
exposures, errors

What percentage of Common
Vulnerabilities and Exposures in C++
are caused by memory bugs?

Womp womp :(

“Don’t dereference a null pointer”

Womp womp :(

“Don’t dereference a null pointer”

There are better alternatives to C++There were alternatives all
along!

Design consideration: Performance

How much faster is C compared to
Java?

The Future of PLs

Credit: Jean Yang

Designing
cutting-edge
programming
languages is like
designing high
fashion

● Very few people will actually use the newest PLs
out of PL research but the PL research is crucial
to finding the boundaries / limits / new frontiers of
programming as we know it

● There are trickle-down effects

● Types!
● Memory safety!
● Better error handling!
● Better compilers!
● Better abstract patterns!
● Generic/modular

programming!
● Concurrency /

parallelization!

Things we didn’t cover in PL design

● Idea of programming paradigms
● Interpreted vs compiled language
● Static vs dynamic typing
● Usability / User Interactions
● Non-western traditions of computation

There are better alternatives to C++The future is out there!

How can we represent
real-world systems of

connected components?

Graphs

Social Networks

Chemical Bonds

The Interstate Highway System

Flowcharts

The Internet!

The Internet!

What is a graph?

graph
A structured way to represent

relationships between different entities.

Definition

Our first graph!

● A structured way to represent relationships between different entities.

Our first graph!

● A structured way to represent relationships between different entities.

Our first graph!

● A structured way to represent relationships between different entities.

A graph
consists of a
set of nodes
connected by
edges.

Our first graph!

● A structured way to represent relationships between different entities.

A graph
consists of a
set of nodes
connected by
edges.

Nodes

Our first graph!

● A structured way to represent relationships between different entities.

A graph
consists of a
set of nodes
connected by
edges.

Edges

Types of graphs

Different types of graphs

● Some graphs are directed. These represent situations where relationships are
unidirectional (an action/verb that explicitly implies only one direction).

Different types of graphs

● Some graphs are directed. These represent situations where relationships are
unidirectional (an action/verb that explicitly implies only one direction).
○ Ex: I follow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back.

Different types of graphs

● Some graphs are directed. These represent situations where relationships are
unidirectional (an action/verb that explicitly implies only one direction).
○ Ex: I follow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back.

Different types of graphs

● Some graphs are directed. These represent situations where relationships are
unidirectional (an action/verb that explicitly implies only one direction).
○ Ex: I follow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back.

Note: It is possible for a
relationship in a directed
graph to go both ways
between two nodes, but it
would need to be explicitly
stated.

Different types of graphs

● Some graphs are undirected. These represent situations where relationships
are bidirectional (the action/verb inherently applies to both entities).

Different types of graphs

● Some graphs are undirected. These represent situations where relationships
are bidirectional (the action/verb inherently applies to both entities).
○ Ex: I am related to my brother, and he is related to me. The relationship applies to both of us.

Different types of graphs

● Some graphs are undirected. These represent situations where relationships
are bidirectional (the action/verb inherently applies to both entities).
○ Ex: I am related to my brother, and he is related to me. The relationship applies to both of us.

Different types of graphs

● Some graphs are weighted. These represent situations where not all
relationships between entities are equal.

Different types of graphs

● Some graphs are weighted. These represent situations where not all
relationships between entities are equal.
○ Ex: The different bonds between atoms in a single molecule all have different bond energies

and strengths.

Different types of graphs

● Some graphs are weighted. These represent situations where not all
relationships between entities are equal.
○ Ex: The different bonds between atoms in a single molecule all have different bond energies

and strengths.

Different types of graphs

● Some graphs are unweighted. These represent situations where all
relationships between entities have equal importance.

Different types of graphs

● Some graphs are unweighted. These represent situations where all
relationships between entities have equal importance.
○ Ex: All connected words in a word ladder are one letter apart from one another.

Types of Graphs Summary

● Directed: Unidirectional relationships between nodes, represented with a
pointed arrow.

● Undirected: Bidirectional relationships between nodes, represented with an
arrow-less line.

● Weighted: Each edge is assigned a numerical "weight" representing its relative
significance/strength.

● Unweighted: Each edge has equal significance, no labels assigned.

Revisiting Graph
Examples

Revisiting Graph Examples: Social Network

Properties

● Nodes: ???

● Edges: ???

● Undirected or Directed?

● Unweighted or Weighted?

Revisiting Graph Examples: Social Network

Properties

● Nodes: People

● Edges: "Friendship" or
"Following"

● Undirected (Facebook)
or Directed (Instagram)

● Unweighted

Revisiting Graph Examples: Chemical Bonds

Properties

● Nodes: ???

● Edges: ???

● Undirected or Directed?

● Unweighted or Weighted?

Revisiting Graph Examples: Chemical Bonds

Properties

● Nodes: Atoms

● Edges: Bonds
(covalent or ionic)

● Undirected

● Weighted

Revisiting Graph Examples: Interstate Highways

Properties

● Nodes: ???

● Edges: ???

● Undirected or Directed?

● Unweighted or Weighted?

Revisiting Graph Examples: Interstate Highways

Properties

● Nodes: Cities

● Edges:
Highways/roads

● Undirected

● Weighted

Revisiting Graph Examples: Flowcharts

Properties

● Nodes: ???

● Edges: ???

● Undirected or Directed?

● Unweighted or Weighted?

Revisiting Graph Examples: Flowcharts

Properties

● Nodes: Events/Actions

● Edges: Transitions

● Directed

● Unweighted

Revisiting Graph Examples: The Internet

Properties

● Nodes: ???

● Edges: ???

● Undirected or Directed?

● Unweighted or Weighted?

Revisiting Graph Examples: The Internet

Properties

● Nodes: Devices (phones,
computers, etc.)

● Edges: Connection pathways
(Bluetooth, WiFi, Ethernet, cables)

● Undirected

● Can be weighted or unweighted

Graphs as Linked Data
Structures

Putting it All Together

● We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all linked data structures!

Putting it All Together

● We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all linked data structures!

● What differentiates each of these linked data structures?

Putting it All Together

● We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all linked data structures!

● What differentiates each of these linked data structures?
○ Linked lists: Linear structure, each node connected to at most one other

node.

Putting it All Together

● We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all linked data structures!

● What differentiates each of these linked data structures?
○ Linked lists: Linear structure, each node connected to at most one other

node.
○ Trees: Nodes can connect to multiple other nodes, no cycles, parent/child

relationship and a single, special root node.

Putting it All Together

● We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all linked data structures!

● What differentiates each of these linked data structures?
○ Linked lists: Linear structure, each node connected to at most one other

node.
○ Trees: Nodes can connect to multiple other nodes, no cycles, parent/child

relationship and a single, special root node.
○ Graphs: No restrictions. It's the wild, wild west of the node-based world!

The Wild World of Graphs

● Graphs can have cycles, and there is no notion of a parent-child relationship
between nodes.

The Wild World of Graphs

● Graphs can have cycles, and there is no notion of a parent-child relationship
between nodes.

The Wild World of Graphs

● Graphs can have cycles, and there is no notion of a parent-child relationship
between nodes.

The Wild World of Graphs

● Graphs have no nodes that are more important than other nodes. In particular,
there is no root node!

Graphs are the most powerful, flexible, and
expressive abstraction that we can use to model
relationships between different distributed
entities. You will find graphs everywhere you look!

Representing Graphs
How do we store and represent graphs in code?

Attendance ticket:
https://tinyurl.com/106bGraphs

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/106bGraphs

The Node struct

struct Node {

 string data;

 Node* next;

}

The Node struct

struct Node {

 string data;

 Node* next;

}

How would our data be different for each application?

The Node struct

struct Node {

 string data;

 Node* next;

}

How can we better represent our edges in graphs?

Approach 1: Adjacency List

Approach 1: Adjacency List

● We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Approach 1: Adjacency List

● We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Approach 1: Adjacency List

● We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Map<Node, Set<Node>>

Node Set<Node>>

Node Adjacent to

Approach 1: Adjacency List

● We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Map<Node, Set<Node>>

Node Set<Node>>

Node Adjacent to

Approach 1: Adjacency List

● We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Map<Node, Set<Node>>

Node Set<Node>>

Node Adjacent to

Approach 1: Adjacency List

● We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Map<Node, Set<Node>>

Node Set<Node>>

Node Adjacent to

Approach 1: Adjacency List

● The approach we just saw is called an adjacency list in comes in a number of
different forms:
○ Map<Node, Set<Node>>

○ Map<Node, Vector<Node>>

○ HashMap<Node, HashSet<Node>>

○ Vector<Node> <- in this case, the Node struct holds collection of

its adjacent neighbors

Approach 1: Adjacency List

● The approach we just saw is called an adjacency list in comes in a number of
different forms:
○ Map<Node, Set<Node>>

○ Map<Node, Vector<Node>>

○ HashMap<Node, HashSet<Node>>

○ Vector<Node> <- in this case, the Node struct holds collection of

its adjacent neighbors

● The core idea is that we have some kind of mapping associating each node
with its outgoing edges (or neighboring nodes).

Approach 1: Adjacency List

● The approach we just saw is called an adjacency list in comes in a number of
different forms:
○ Map<Node, Set<Node>>

○ Map<Node, Vector<Node>>

○ HashMap<Node, HashSet<Node>>

○ Vector<Node> <- in this case, the Node struct holds collection of

its adjacent neighbors

● The core idea is that we have some kind of mapping associating each node
with its outgoing edges (or neighboring nodes).

● How might you incorporate weights?

Approach 1: Adjacency List

● The approach we just saw is called an adjacency list in comes in a number of
different forms:
○ Map<Node, Set<Edge>>

○ Map<Node, Vector<Edge>>

○ HashMap<Node, HashSet<Edge>>

○ Vector<Node> <- in this case, the Node struct holds collection of

its adjacent neighbors

● The core idea is that we have some kind of mapping associating each node
with its outgoing edges (or neighboring nodes).

● Create an Edge struct that holds both a Node and a weight

Approach 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Approach 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Approach 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Approach 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Approach 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

1

1

Approach 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

1

1

Approach 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

1

1

1

1

Approach 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

1

1

1

1

1

1

1

1

1

11

1

Approach 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

1

1

1

1

1

1

1

1

1

11

1

Approach 2: Adjacency Matrix

● We can also use a two-dimensional
matrix to represent the relationships
in a graph.

1

1

1

1

1

1

1

1

1

11

1

0

0

Approach 2: Adjacency Matrix

● To add weights, store other numbers besides 1 in the matrix.

● Adjacency matrices are beneficial when our graph isn’t sparse, i.e. there aren’t
a lot of 0s. Otherwise, storing a mostly-0s matrix is not space efficient.

● Other benefits:
○ Grid lookup is super fast!
○ Storing weights is more straightforward than in the adjacency list.
○ Computer hardware has been optimized for matrix math - so using a grid

can help us perform complex matrix operations for data analysis.

Graph Algorithms

Graph Algorithms

● There are many, many different graph algorithms out there.
○ Check out this graph search algorithms demo.

https://en.wikipedia.org/wiki/Category:Graph_algorithms
https://qiao.github.io/PathFinding.js/visual/

Graph Algorithms

● There are many, many different graph algorithms out there.
○ Check out this graph search algorithms demo.

● Some famous examples include:

https://en.wikipedia.org/wiki/Category:Graph_algorithms
https://qiao.github.io/PathFinding.js/visual/

Graph Algorithms

● There are many, many different graph algorithms out there.
○ Check out this graph search algorithms demo.

● Some famous examples include:
○ BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.

https://en.wikipedia.org/wiki/Category:Graph_algorithms
https://qiao.github.io/PathFinding.js/visual/

Graph Algorithms

● There are many, many different graph algorithms out there.
○ Check out this graph search algorithms demo.

● Some famous examples include:
○ BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.
○ Kruskal's Algorithm: Find a minimum spanning tree from a given graph.

https://en.wikipedia.org/wiki/Category:Graph_algorithms
https://qiao.github.io/PathFinding.js/visual/

Graph Algorithms

● There are many, many different graph algorithms out there.
○ Check out this graph search algorithms demo.

● Some famous examples include:
○ BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.
○ Kruskal's Algorithm: Find a minimum spanning tree from a given graph.
○ Topological Sort: "Sort" the nodes in a dependency graph in such a way that traversing the

nodes in order results in all dependencies being fulfilled at each point in time.

https://en.wikipedia.org/wiki/Category:Graph_algorithms
https://qiao.github.io/PathFinding.js/visual/

Graph Algorithms

● There are many, many different graph algorithms out there.
○ Check out this graph search algorithms demo.

● Some famous examples include:
○ BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.
○ Kruskal's Algorithm: Find a minimum spanning tree from a given graph.
○ Topological Sort: "Sort" the nodes in a dependency graph in such a way that traversing the

nodes in order results in all dependencies being fulfilled at each point in time.
○ Traveling salesman: Given a map of cities and the distances between them, find the shortest

path that traverses all cities in the map.

https://en.wikipedia.org/wiki/Category:Graph_algorithms
https://qiao.github.io/PathFinding.js/visual/

Graph Algorithms

● There are many, many different graph algorithms out there.
○ Check out this graph search algorithms demo.

● Some famous examples include:
○ BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.
○ Kruskal's Algorithm: Find a minimum spanning tree from a given graph.
○ Topological Sort: "Sort" the nodes in a dependency graph in such a way that traversing the

nodes in order results in all dependencies being fulfilled at each point in time.
○ Traveling salesman: Given a map of cities and the distances between them, find the shortest

path that traverses all cities in the map.

● Graphs can also be used in conjunction with machine learning algorithms to
accomplish cool things. Take CS224W to learn more!

https://en.wikipedia.org/wiki/Category:Graph_algorithms
https://qiao.github.io/PathFinding.js/visual/

Announcements

Announcements

● Assignment 5 revisions and Assignment 6 are due today at 11:59pm PDT. Remember that
this is a hard deadline, and there is no grace period!

● There is no official section this week, but keep an eye out for an email from your SL’s in
case they are hosting an optional section, or if the section time is being used for Final
Project presentations.

● Submit questions for tomorrow’s Ask Us Anything here (also in this week’s
announcements). No lecture on Thursday so tomorrow is our last day of class.

● Tomorrow will be our last group OH (Kylie and Jenny will be there!).

https://docs.google.com/forms/u/3/d/e/1FAIpQLSd4Fx87uNEo9EMOfMeUsTDH_KtK3RkMAO6NsFs7oPAiD4cSJA/viewform?usp=send_form

Making our own projects!

?????????

?????????

The Standard
Template Library
“using namespace std??”

What we know so far

How do I use
STL ADTs?

A 5 step guide:

1. Include your ADT

How do I use
STL ADTs?

A 5 step guide:

1. Include your ADT
a. #include <vector>

How do I use
STL ADTs?

A 5 step guide:

1. Include your ADT
a. #include <vector>

2. Write the ADT in lowercase

How do I use
STL ADTs?

A 5 step guide:

1. Include your ADT
a. #include <vector>

2. Write the ADT in lowercase
a. vector<int> myVector;

How do I use
STL ADTs?

A 5 step guide:

1. Include your ADT
a. #include <vector>

2. Write the ADT in lowercase
a. vector<int> myVector;

3. Put std:: in front of it

How do I use
STL ADTs?

A 5 step guide:

1. Include your ADT
a. #include <vector>

2. Write the ADT in lowercase
a. vector<int> myVector;

3. Put std:: in front of it
a. std::vector<int> myVector;

How do I use
STL ADTs?

A 5 step guide:

1. Include your ADT
a. #include <vector>

2. Write the ADT in lowercase
a. vector<int> myVector;

3. Put std:: in front of it
a. std::vector<int> myVector;

4. ???

How do I use
STL ADTs?

A 5 step guide:

1. Include your ADT
a. #include <vector>

2. Write the ADT in lowercase
a. vector<int> myVector;

3. Put std:: in front of it
a. std::vector<int> myVector;

4. ???
5. Profit!

Spot the difference!

Table courtesy of Frankie Cerkvenik and Sathya Edamadaka!

Makefiles
How does our code actually compile?

Makefiles and cmake

A Makefile is the recipe for your build!

It tells the compiler:

● What files to include
● What dependencies they have
● What code to run to put it all together

Makefiles and cmake

A Makefile is the recipe for your build!

It tells the compiler:

● What files to include
● What dependencies they have
● What code to run to put it all together

These can be a little manual – cmake abstracts a lot of it for you!

Example cmake file (from CS106L)

Example cmake file (from CS106L)

Take CS 107/107E next to learn more about compiling!

Leveling up classes
Speaking of vector<int>...

What’s up with <>?

When we make classes, we can initialize them in the constructor with some
parameters!

What’s up with <>?

When we make classes, we can initialize them in the constructor with some
parameters!

These have to have a certain type…

What’s up with <>?

When we make classes, we can initialize them in the constructor with some
parameters!

These have to have a certain type…

How can we make a class that can take in any type of parameters?

Template classes!

All of our favorite ADTs are template classes!

Pros:

● Can take in any type
● Generalized
● Easy for the client and the programmer

Template classes!

All of our favorite ADTs are template classes!

Pros:

● Can take in any type
● Generalized
● Easy for the client and the programmer

Cons:

● We don’t know how to make them yet??

Syntax

● class ClassName { … }

● FIXED_TYPE var;

● template<class typeName> class

ClassName { … }

● typeName var;

Instead of: Use:

Syntax

● class ClassName { … }

● FIXED_TYPE var;

● template<class typeName> class

ClassName { … }

● typeName var;

Instead of: Use:

Anywhere you use a fixed type, use typeName!

What about operators?

Want to learn more?

Take CS106L!
havenw@stanford.edu

Go forth and code!

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

Core
Tools

User/client
Implementation

real-world
algorithms

