Programming Languages,
Graphs, and more!

What was your favorite part about working on your
final project?

https://pollev.com/cs106bpolls

" What was your favorite part about working on your final :

project?

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Midterm

Roadmap

real-world
algorithms

Life after CS106B/

Today’s
questions....by
popular vote!

Why is programming
language design like high
fashion?

How can we represent
real-world systems of
connected components?

How do you start your own
C++ projects?

Programming Languages

Today'’s
topics . Graphs

Making your own C++
projects

Programming Language
Design

C++is a “a general-purpose programming language”
with “object-oriented, generic, and functional
features”

What does that mean?
Why is C++ this way?
What were the alternatives??

YES THERE WERE
ATIVES

Shout out to Will Crichton who let us adapt
the following slides from CS242)!

https://willcrichton.net/

Guess the most popular programming language
(for professional developers) in 2020

Guess the most popular programming language!

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

It's Javascript! (Stack Overflow,

Javascript

HTML/CSS 62.4%

SQL 56.9%

Python 41.6%

Java 38.4%

Bash/Shell/PowerShell 34.8%

32.3%

Typescript 28.3%

PHP

25.8%

20.5%

o

18.2%

o
o o

9.4%

8.0%

75%

=
2
3

o
N
2

o
» 3
A II
g o
& —

Ed

Assembly -49%

https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-wanted

Trcimmeauch. =y

:
-- I CES Flamemorks I i Lot
l i‘ Chakia 1 '
K J S
o L
Juwt Tenling your Apps L’
T Lo e iTot oo Bt 1, 7 G iy ﬁ’ oAkt I

‘] . ond bunzzoroltests andleors Fos 12 wrne JE bioed 0nd betie 12U
Qnreu them with the 100 listed or the helt “ATIn pur Ircmanch homd
I\ Tireussie 5
ware e :

= ” Choi Zeanite
‘weu can M ol yeurtasteg
nead whh uck these
v
L — *

| e e pose a5
: B

.
Nexlis
| Location | I PRPL Pekiarn d
| Darvice Oriwntotion I [Farfarmance Matics]
o
| Payrenls l Lsirg Lighthesses
| Credertcls | [Usrg CevTools | . Huel
Leam dricremt 'Aed Cclodoling Magsrrg
Al ol i Ak cind e ning swfer v ce
el e
o Golaty)5
1 Mahie Applicalicre Stexic Site Canwrolors

] | Nuel jx
| ‘ucgreze ¢

Jaigfl

(S <

.I Eluciier
& I Tewti
]

Drwbiap Appkentians

Huge

‘Pt Keavm—bely oo 'WIASM o the birarg ine uclione genmeeciad fum
~igherlews krgreqes such o 5o, G C1 1 or Auet. iz fegier tren
S

Wab Aasambly

pl ond AASM 0.0 hoe oFeods zhpoed © lhe moee bowe
WIC azcepted il 9z on ofc ol slondord cttre enc ot 2019, 2wl 2ol

laks qalm ko Ume 1 go mars mem thaagh

std::move_if noexcept

Defined in header <utility>

template< class T >

typename std::conditional< (since

!std::is_nothrow_move constructible<T>::value && std::is_copy_constructible<T>::value, C++11)
const T&, (until
T&& C++14)

>::type move_if noexcept(T& x) noexcept;

template< class T >
constexpr typename std::conditional<

!std::is_nothrow move constructible<T>::value && std::is_copy constructible<T>::value, (since
const T&, C++14)
T&&

>::type move_if noexcept(T& x) noexcept;
move_if_noexcept obtains an rvalue reference to its argument if its move constructor does not throw exceptions or if
there is no copy constructor (move-only type), otherwise obtains an lvalue reference to its argument. It is typically
used to combine move semantics with strong exception guarantee.

Parameters
x - the object to be moved or copied

Return value

std: :move(x) or x, depending on exception guarantees.

Notes

This is used, for example, by std: :vector::resize, which may have to allocate new storage and then move or copy
elements from old storage to new storage. If an exception occurs during this operation, std: :vector: :resize undoes
everything it did to this point, which is only possible if std: :move_if_noexcept was used to decide whether to use
move construction or copy construction. (unless copy constructor is not available, in which case move constructor is
used either way and the strong exception guarantee may be waived)

Example
Run this code

#include <iostream>
#include <utility>

struct Bad
{

Bad() {}
Bad (Bad&&) // may throw

{
std::cout << "Throwing move constructor called\n";
}

Guess the most popular programming
language in 1952

Guess again!

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

None! Only assembly languages

MOV AL, 1h ; Load AL with immediate value 1
MOV CL, 2h ; Load CL with immediate value 2
MOV DL, 3h ; Load DL with immediate value 3

The syntax of MOV can also be more complex as the following examples show.[24]

MOV EAX, [EBXI] ; Move the 4 bytes in memory at the address contained in EBX into EAX
MOV [ESI+EAX], CL ; Move the contents of CL into the byte at address ESI+EAX
MOV DS, DX ; Move the contents of DX into segment register DS

Q
Q)

X
X

And before that... raw numeric machine codes!!!

On assembly:

I think | spent 20 years fighting the
“Establishment.” In the early years of programming
languages, the most frequent phrase we heard was
that the only way to program a computer was in
octal. Of course, a few years later a few people
admitted that maybe you could use assembly
language.

Grace Hopper
HOPL Keynote, 1978

How did we get to 20227

How did we get here? (C++, 1979)

BIARNE'STROUSTRUP

How did we get here? (C, 1972)

SECOND EDITION

/) 7 - &““ \
N |
\ A =
.
3

PROGRAMMING
CANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

Hey! Week 8 you now understands what it
means for C++ to be C but with classes!

L~

How did we get here? (C, 1972)

SECOND EDITION

/) 7 - &““ \
N |
\ A =
.
3

PROGRAMMING
CANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

How did we get here? (B, 1969)

Article Talk

B (programming

From Wikipedia, the free encyclopedi

This article is about a languag:
B is a programming language dev

B was derived from BCPL, and its
might be based on Bon, an earlier

B was designed for recursive, non
language, with the only data type |

words became important. The typeless nature of the language was seen as a disadvantage, which led Thompson and Ritchie to develop an
expanded version of the language supporting new internal and user-defined types, which became the C programming language.

Read Edit View history

erton, see ABC (programming language). For c
hie.

rker Dennis Ritchie speculated that the name
or use on Multics.[Mote 1]

language software.®! It was a typeless
tever that might be. Depending on the

Contents [hide]
1 History

2 Examples

3 See also

How did we get here? (Algol, 1959)

Algol introduced into programming languages
such terms as type, declaration, identifier, for
statement, while, if then else, switch, the begin
end delimiters, block, call by value and call by
name, typed procedures, declaration scope,
dynamic arrays, side effects, global and local
variables.

Algol was strongly derived from FORTRAN and its
contemporaries. The logic, arithmetic and data
organizations were close to those then being

Alan Perlis, designed into real computers. Certain simple
"The American Side of the generalizations of computer instructions such as
Development of Algol” 1978 switch, for statement, and if statements were
included because their semantics and computer
processing were straight-forward consequences of
single statement processing.

Algol introduced into programming languages
such terms as type, declaration, identifier, for
statement, while, if then else, switch, the begin
end delimiters, block, call by value and call by
name, typed procedures, declaration scope,
dynamic arrays, side effects, global and local
variables.

Algol was strongly derived from FORTRAN and its
contemporaries. The logic, arithmetic and data
organizations were close to those then being

Alan Perlis, designed into real computers. Certain simple
"The American Side of the generalizations of computer instructions such as
Development of Algol” 1978 switch, for statement, and if statements were
included because their semantics and computer
processing were straight-forward consequences of
single statement processing.

How did we get here? (Fortran, 1957)

PRAINZY

-!:II"”C”'“
Msuoo]“ouuouloqud..-‘s~z,‘) 000000000000 000000 ‘;-".w;x"olouruw‘hu_ 00|aau‘
lll)din’Vl"Ji.,'UéM',. \V | B) %4 IROHGEORGIONNRNBUTIEN NT
Iﬂlll“dllllll 11 |1\1|; BABOEER SEREBERRLEITH '1x‘fllllllllllllllllllll
22222"!’2‘2223;- 2222 22221 2222 27 222222 2212:2:2:2:22:257 22282 “12222‘-222222
[|

(]]] 3 1333333333 3133733533

!

3'333331‘3333333.

4'44444133444 44

The starter code:

IBM FORTRAN Coding Form

Fortran... kind of looks familiar!

PROGRAM main
IMPLICIT NONE

character(len = 15) :: hello = "Hello, World!"
print *, hello

0o NJNO U B WN =

END PROGRAM matin

The big ideas in our
programming languages
haven't really changed since
1958.

ctatements, variable assignment, fFor

loops, clacces, and <o on

Turing languages

\4

1957 - FORTRAN
1959 - ALGOL
1962 - SIMULA

1972-C

1979 - C++

1991 - Python
1995 -Java

It didn’t need to be this way!

And in fact, it hasn’t!

Turing languages

1957 - FORTRAN
1959 - COBOL, ALGOL 1959 - LISP
1962 - SIMULA
1966 - ISWIM

1972 - C, Smalltalk 1972 - Prolog
1979 - C++ 1978 - ML
1991 - Python 1990 - Haskell
1995 - Java

\4 \4

Alan Turing Alonzo Church

“On Computable “A set of postulates for the
Numbers” 1937 foundation of logic”, 1932

What do you think this does? What do you observe?

#lang racket

(define (extract str)
(substring str 4 7))

SO U B W N =

(extract "the cat out of the bag")

;3 Push elem onto stack (default value null).
(define (push elem [stack nulll)
(cons elem stack))

;3 Pop item off stack, returning the stack after pop.
(define (pop stack)
(unless (empty? stack)
(rest stack)))

;; Peek at top element of stack, returning it.
(define (peek stack)
(unless (null? stack)
(first stack)))

;3 Run a program defined as a stack.
(define (run prog)
;3 Internal stack.
(define stack null)
;3 for each element in program...
(for ([elem progl)
;3 if current element is a procedure..
(if (procedure? elem)
;3 local bindings for the top two elements..
(let ([numl (peek stack)]
[num2 (peek (pop stack))])
;3 set! the internal stack to be the current stack with top two
;3 elements popped off and the result of applying current elem to them
;3 pushed to stack.
(set! stack (push (elem numl num2) (pop (pop stack)))))
;3 Otherwise, set! the internal stack to the result of pushing the
;3 current element to the stack.
(set! stack (push elem stack))))
stack)

https://github.com/harrisi/stack/blob/master/stack.rkt

Turing languages

Inspired by compurers
Computation as operations on a
machine

Turing machines

erase X 1:1 halt

find A increment 1

CO A Al [a[a[a s]]

Church languages

Inspired by math!
Computation as mathematical
functions

Lambda calculus

z—ylz =y

z — y] 2 — %

oyl Az, x =Az.
z—ylAy.zy =y . yy
x> ylz(Az.) =4 (AT . &)

Turing languages

e Focus on practical
connection to computers
o Make hardware first,
then design software
abstractions around
that

o How does data get
stored?

o What is the order of
execution (control of
flow)?

Church languages

e Focus on mathematics

o Think through
abstractions first. What
is the “mathematical
essence of a function”
first?

o What is a function?

o How can we formally
define functions?

o How can we formally
define variables?

Programming paradigm: a way we cluster
languages by a combination of programming
style and language behavior

Imperative paradigm Functional paradigm

P L W T— ! . J . K
o /home/fred/karel/!karel.txt 414
goal 2.1.1 hangTheLampions stop' ; \{IOid hangTheLampions() M' m ,wm 95.5
3 repeat (9) 96 92.5/=1F{G3>89, A" IF(G3>79,"B",IF{G3>89,"C",IF(G3>58,"D" IFI G3<60,"F")))))
| stepinto (F12) || step over || step return | /i { 85 781 Cllregica sest, ivatn il tranl, ltdon ¥ fateed 85.15625
. 5 hangOneLamg%on(); 90 818 84
v r e r s+ DR T %] ___e1.25)8 79.75
& i & T 4 55 5 8 & 8 hangOneLampion(); 91 7975 8 83.25
— S 9 99 95.5 A 79.75
+ + + + + + o+ o+ o+ o+ 10
—_— 11 void hangOneLampion() - e v I
£ + + + + + + + + + 12 { 95 83.25/8 ENUM|
+ o+ o+ o+ o+ o+ o+ o+ o+ o+ 13 tPr"LEft(”
14 nickReener(): Jass Average 85.15625 8

Object-oriented paradigm

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int value);
int removeRandom() ;

private:
Vector<int> elems;
. o

How do we compare across
languages?

What should we compare across
languages?

Are these two types of languages
equally powerful?

Church Turing Thesis: Anything that you
could compute with a Turing Machine you
could compute with lambda calculus.

Turing complete: equivalent computational
power to a Turing machine...aka any
algorithm could be implemented

Used as a benchmark for what kind of stuff
you can do with a programming language

Turing complete: equivalent computational
power to a Turing machine...aka any
algorithm could be implemented

Used as a benchmark for what kind of stuff
you can do with a programming language

Ces /D_yt/mn 4

] AVOQ
D

Which of these are NOT Turing complete?

& Give Feedback

HTML

Minecraft

charset="UTF-8">
e>Title goes here</tit

what-is-excel - Excel = - o x

Q Signin £ Share

& K Calibri <. = 9 | & Conditional Formatting~ =4 | | o

B~ B I U~ A A 2] -
Scratch BB T i Bl e,

S 7 1 O-A~ & - [Zcenstyles~ - -

Clipboard 1 Font o Styles ~

A1 > fe v
A 8 c D E F G H ! =

1 I:I

2

3

4

5

6

7

8

e

Sheet1 Sheet2 Sheet3

7
&

Which of these are NOT Turing complete?

HTML

e Describes data, not
computation
e Doesn’t allow you to
execute for-loops, etc.
o Not every algorithm
can be implemented
using HTML

Are these two types of languages
equally easy to use?

Church languages are intimidating

Functor Apply Semigroup
Comonad Applicative |« - rrreriaaann Monatd [:0v0 v Category
Alternative Foldable Monad | : Arrow # ArrowZero (- ArrowPlus

Traversable MonudFi{I\lnnddPlus ArrowApply ArrowChoice ArrowLoop

Couldn't match type k@' with b’
because type variable "b' would escape its scope
This (rigid, skolem) type variable is bound by
the type signature for
groupBy :: Ord b => (a -> b) —> Set a —> Set (b, [al)
The following variables have types that mention kO -

public class Person {
private final String firstName;
private final String lastName;
private final Integer age;
public Person(String firstName, }
String lastName,
Integer age) {
this. firstName = firstName;
this. lLastName = lastName;

" this.age = age; }
public String getFirst() { P
return firstName;

}

public String getlLast() {
return lastName;

public static List<String> validByAge(List<Person> in) {
List<Person> people = new ArrayList<Person>();
for (Person p: in) {

if (p.valid()) people.add(p);

Collections.sort(people, new Comparator<Person>() {
publicint compare(Person a, Person b) {
return a.age() - b.age();

List<String> ret = new ArrayList<String>();
for (Person p: people) {
ret.add(p.first);

}]

public Integer getAge() {) return ret;
return age;

}

" ; List<Person> input = new ArrayList<Person>();
pubhctBoo;eaen>valélld() { input.add(new Person("John", "Valid", 32));
3 return ag ' input.add(new Person("John", "InValid", 17));

} input.add(new Person("OtherJohn", "Valid", 19));

List<Persons outputi S va ;'dB“Age('innu'H

case class Person(val first: String, val last: String, val age: Int) {
def valid: Boolean = age > 18

}

def validByAge(in: List[Person]) =
in.filter(_.valid).sortBy(_.age).map(_.first)

validByAge(List(
Person("John", "Valid", 32),

Person("John", "Invalid", 17), David Pollak, “Beginning Scala” _
Person("0therJohn", "Valid", 19)))

Other ways to compare
programming languages

Tradeoffs

Productivity

Safety Performance

Credit; Alex Aiken

Tradeoffs

Productivity

Safety Performance

Credit; Alex Aiken

Design consideration: Productivity

Productivity:

e Do we have big, easy-to-use
building blocks (aka libraries) to
get to powerful programs?

e |[s this programming language
easy-to-use and read?

Productivity: libraries to build on top of?

@ (tear» matplitlib i pandas I Keras

o,

D C rlask sea bern ®iwmey django

NLTK ‘AZ Numpy
Spark theano

g o
o O e pattle o elown

Falcon

‘ensorFlow P QY ’*% s (
TensorFl @xnet /:g % ?ﬁb <w > 00

© learn

uests
Scikit-learn Pandas .

> Q Pyfolio @ scikit-image

python takes the coke!

Productivity:

e Do we have big, easy-to-use
building blocks (aka libraries) to
get to powerful programs?

e Is this programming language
easy-to-use and read?

What percentage of time do
programmers spend actually writing
code when they’re programming?

ONLY 5% ¢6 ¢

L o _adod ——

Editing (~5%) Navigation (~4%)

Outside IDE (~8%) A\

Minelli et al. “I Know What You Did Last Summer: An Investigation of How Developers Spend Their Time” ICPC ’15.

Project =~ Comprehension Navigation Editing Others
Average 57.62% 23.96% 5.02% 13.40%

Xia et al. “Measuring Program Comprehension: A Large-Scale Field Study with Professionals.” IEEE Trans. Softw. Eng, 2018.

Productivity:

e Do we have big, easy-to-use
building blocks (aka libraries) to
get to powerful programs?

e |[s this programming language
easy-to-use and read?

Design consideration: Safety

Safety: reduce vulnerabilities,
exposures, errors

What percentage of Common
Vulnerabilities and Exposures in C++
are caused by memory bugs?

“The majority of vulnerabilities fixed and with a CVE assigned
are caused by developers inadvertently inserting memory
corruption bugs into their C and C++ code.”

100%
90%
80%
70%
60%
50%

% of CVEs

40%
30%
20%
10%

0%

2006 2007 2008 2009 2010 201 2012 2013 2014 2015 2016 2017 2018
Patch Year

B Memory safety B Not memory safety

Womp womp —""mpn TT—

= NULI_"TR
|i|—/

Buffer Overflow
(8 bytes) (2 bytes)
“Don’t dereference a null pointer”
1 2
0 1 2 3 4y 5 6 7 8 9
Accidén v Herramientas v Ctrl+Alt+Supr

Segmentation fault
Segmentation fault
I'bin/sh: error while loading shared libraries: ®» F8sSuETam
cammot open shared object file: No such file or directory
Segmentation fault
Segmentation fault
Segmentation fault

Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault

Womp womp EMMANUEL] e

NULE’TR

reference a null pointer”

braries: § F8aSuETax
1 file or directory

The Rust
Programming
Language

Design consideration: Performance

How much faster is C compared to
Java?

Double No BLAS BLAS

Immutable Mutable Only Objects InC Transposed Tiled Vectorized MxM Parallel
ms 17,094,152 77,826 32,800 15,306 7,530 2,275 1,388 511 196 58
219.7x 2.2x 3.4x 2.8x 3.5x
2.4x 2.1x 1.7x 2.7x
219.7x
522x
1117x
2271x
7514x
12316x
33453x
|
87042x
296260x
Cycles/OP 8,358 38 16 7 4 1 1/2 1/5 1/11 1/36

Saman Amarasinghe, MIT 6.172 “Performance Engineering”. 2009

The Future of PLs

Designing
cutting-edge
programming
languages is like
designing high
fashion

e Very few people will actually use the newest PLs
out of PL research but the PL research is crucial
to finding the boundaries / limits / new frontiers of
programming as we know it

e There are trickle-down effects)
Credit: Jean Yang

Church languages are coming!
S —» SScala + [

Java
- —>) Swift

Object ve-C

@—»@
Js—>

Types!

Memory safety!

Better error handling!
Better compilers!

Better abstract patterns!
Generic/modular
programming!

e Concurrency/
parallelization!

R— julia

ﬁ —PP (with types)

Church languages are coming!

Messenger.com Now 50% Converted to Reason

September 8, 2017

Boom!

* Messenger used to receive bugs reports on a daily basis; since the introduction of Reason, there have
been a total of 10 bugs (that's during the whole year, not per week)! *

» Most of the messenger core team's new features are now developed in Reason.

» Dozens of massive refactors while iterating on ReasonReact. Refactoring speed went from days to
hours to dozens of minutes. | don't think we've caused more than a few bugs during the process
(counted toward the total number of bugs).

Things we didn’t cover in PL design

ldea of programming paradigms
Interpreted vs compiled language
Static vs dynamic typing

Usability / User Interactions
Non-western traditions of computation

The future is out there!

How can we represent
real-world systems of
connected components?

Graphs

Social Networks

facebook

Chemical Bonds

-

The Interstate Highway System

Whaehock Gots fmenon
[} B} 5]
Blane 1) ®
(SweetGas Pk o)
Beinghar Heers Gandeds
)5t te. Marieow
Bensug) Spotane Missoda Butte EBsmark fargo
Seatte) Sault te. Marie w5)
T i
llings @ Green By 3]
The Dalles. Buffalowr Rapid Gty
Pontand @) o Rl
Hemiston 3
Soem 9
figene
Q QPoctetoD
el ‘ - oy
. T
ogéen ()
Reno [Beyenne, BigSpiogs (3
sttty | o
e
y "
o,
Scten Welby
San Frandscol 00 .l
(e FormD) GO
oot pigs
i Pueo
Lasvegs
swfe
foga(1 Gap Aboergue
e [
(Santa Monica) Q)P O-.
Ot Phosax 1]
Yo \ Guang ()
0, o)
(Do BB JoomiD
Bon¥odoEl) @ Y O oo
o W

(e & (MomiE)

S Cunplain [

S onatoelaatels) ol o) S

0 0 0
gite, | Dety L 1)

) Q)

O Wellesley iand (1)

Yewmn

(Fouton

(o ok

Flowcharts

oA —
- HONTHIS PASS
THROW AWAY
REMAINING
[BUY INGREDIENTS| INGREDIENTS
AS THEY GO BAD
7
WEEKS PASS
| THROW ALY,
| LEFTOVERS
DAYS PASS
ORDER PIZTA
IT TASTE
GOOD? HOURS PASS
IN FRIDGE.

The Internet!

™

ILLINOIS

cA aﬁ
CARNEG! '

BURROUGHS

MITRE

The Internet!

What is a graph?

graph
A structured way to represent
relationships between different entities.

Our first graph!

e A structured way to represent relationships between different entities.

Our first graph!

e A structured way to represent relationships between different entities.

4

Our first graph!

e A structured way to represent relationships between different entities.

4

A graph
consists of a
set of
connected by

Our first graph!

A structured way to represent relationships between different

Nodes

A graph
consists of a
set of
connected by
edges.

Our first graph!

e A structured way to represent between different entities.

I A graph
consists of a

<——— Edges +— set of nodes

A
\/ \ conne.cted by

Types of graphs

Different types of graphs

e Some graphs are . These represent situations where relationships are
unidirectional (an action/verb that explicitly implies only one direction).

Different types of graphs

e Some graphs are . These represent situations where relationships are

unidirectional (an action/verb that explicitly implies only one direction).
o Ex:|follow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back.

Different types of graphs

e Some graphs are . These represent situations where relationships are

unidirectional (an action/verb that explicitly implies only one direction).
o Ex:|follow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back.

Different types of graphs

e Some graphs are . These represent situations where relationships are

unidirectional (an action/verb that explicitly implies only one direction).
o Ex:|follow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back.

Note: It is possible for a
relationship in a directed
graph to go both ways
between two nodes, but it
would need to be explicitly
stated.

Different types of graphs

e Some graphs are . These represent situations where relationships
are bidirectional (the action/verb inherently applies to both entities).

Different types of graphs

e Some graphs are . These represent situations where relationships

are bidirectional (the action/verb inherently applies to both entities).
o Ex:lam related to my brother, and he is related to me. The relationship applies to both of us.

Different types of graphs

e Some graphs are . These represent situations where relationships

are bidirectional (the action/verb inherently applies to both entities).
o Ex:lam related to my brother, and he is related to me. The relationship applies to both of us.

Different types of graphs

e Some graphs are . These represent situations where not all
relationships between entities are equal.

Different types of graphs

e Some graphs are . These represent situations where not all

relationships between entities are equal.
o Ex: The different bonds between atoms in a single molecule all have different bond energies
and strengths.

Different types of graphs

e Some graphs are . These represent situations where not all

relationships between entities are equal.
o Ex: The different bonds between atoms in a single molecule all have different bond energies
and strengths.

Different types of graphs

e Some graphs are . These represent situations where all
relationships between entities have equal importance.

Different types of graphs

e Some graphs are . These represent situations where all

relationships between entities have equal importance.
o Ex: All connected words in a word ladder are one letter apart from one another.

Types of Graphs Summary

e Directed: Unidirectional relationships between nodes, represented with a
pointed arrow.

e Undirected: Bidirectional relationships between nodes, represented with an
arrow-less line.

e Weighted: Each edge is assigned a numerical "weight" representing its relative
significance/strength.

e Unweighted: Each edge has equal significance, no labels assigned.

Revisiting Graph
Examples

Revisiting Graph Examples: Social Network

Properties

e Nodes; ???
e Edges: ???
e Undirected or Directed?

e Unweighted or Weighted?
facebook

Revisiting Graph Examples: Social Network

Properties

e Nodes: People

e Edges: "Friendship" or
"Following"

e Undirected (Facebook)
or Directed (Instagram)

facebook

e Unweighted

Revisiting Graph Examples: Chemical Bonds

Properties

e Nodes:; ???
e Edges: ??7?
e Undirected or Directed?

e Unweighted or Weighted?

Revisiting Graph Examples: Chemical Bonds

Properties

e Nodes: Atoms

e Edges: Bonds
(covalent or ionic)

e Undirected

e Weighted

Revisiting Graph Examples: Interstate Highways

Properties

e Nodes: ???

e Edges: ???
([

Undirected or Directed?

Unweighted or Weighted?

g

g @

Guts

[SweatGusil

[
S

e

oot

e

°
e (s
i -

! Saut st Hare il vl bt detoaiefs) o 5] St o1 Moot

T et A
b Gy Qi Lo
o

P eaned
it en | s soe) Jeon (206500
Ol O

po—

: X S
SonFrandsco)

Santaonica

SanDiego BB
Gioed ©

Sty

L e

st

™

(Kem?D)

e s

Wonaod
O

\ e O
B D

(ladsonie

O~
Gl e

[Te Q toreeatd @

o

(Haleah (B

(o

Revisiting Graph Examples: Interstate Highways

Properties

e Nodes: Cities

e FEdges:
Highways/roads

e Undirected

e Weighted

s e
ol 5]
o i
) o=l
g i Gt T (s
Jstste o ey st
o vee) Soone s e s . bt tetociels) (]) St
ot Mare) S
R P .
oms : Rl) e
. i
) .. Gt y st 9,
et Gy o 1
Pt oborts,
Wersen® s
Siem
Lo -
Goper Sy
iy
o e e
e o B o o (000
O Omee3=O O
SitteGn | 49D e | Comty
po— Gkl
Sudea

Snfandsa D)

SoOep B
s o)

o
L e

GOED uaws e

e
O

& (FWorth

g \ -}

(Kem?D)

Sl s

(adsonie

s

O~ e
Gveontd) (GPacel) e, O it

GO)

(e)

[Fen) & (VariEd

Revisiting Graph Examples: Flowcharts

Properties
e Nodes: 7?7
e Edges: ???
e Undirected or Directed?

Unweighted or Weighted?

I SHOULD

COOK MORE!

[BUY INGREDIENTS|

y
PUT SoME
IN A PAN

MONTHS PASS

IN FRIDGE

Revisiting Graph Examples: Flowcharts

Properties

Nodes: Events/Actions

Edges: Transitions

Directed

Unweighted

I SHOULD

COOK MORE!

[BUY INGREDIENTS|

y
PUT SoME
IN A PAN

MONTHS PASS

IN FRIDGE

Revisiting Graph Examples: The Internet

Properties

e Nodes; ???
e Edges: ???
e Undirected or Directed?

e Unweighted or Weighted?

Revisiting Graph Examples: The Internet

Properties

e Nodes: Devices (phones,
computers, etc.)

e Edges: Connection pathways
(Bluetooth, WiFi, Ethernet, cables)

e Undirected

e Can be weighted or unweighted

Graphs as Linked Data
Structures

Putting it All Together

e We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all !

Putting it All Together

e We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all !

e What differentiates each of these linked data structures?

Putting it All Together

e We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all !

e What differentiates each of these linked data structures?
o Linked lists: Linear structure, each node connected to at most one other
node.

Putting it All Together

e We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all !

e What differentiates each of these linked data structures?
o Linked lists: Linear structure, each node connected to at most one other
node.

o Trees: Nodes can connect to multiple other nodes, no cycles, parent/child
relationship and a single, special root node.

Putting it All Together

e We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all !

e What differentiates each of these linked data structures?
o Linked lists: Linear structure, each node connected to at most one other
node.
o Trees: Nodes can connect to multiple other nodes, no cycles, parent/child
relationship and a single, special root node.
o Graphs: No restrictions. It's the wild, wild west of the node-based world!

The Wild World of Graphs

e Graphs can have cycles, and there is no notion of a parent-child relationship
between nodes.

The Wild World of Graphs

e Graphs can have cycles, and there is no notion of a parent-child relationship

between nodes.

The Wild World of Graphs

e Graphs can have , and there is no notion of a parent-child relationship

between nodes.

The Wild World of Graphs

e Graphs have no nodes that are more important than other nodes. In particular,
there is no root node!

Graphe are the moct
abstraction that we can use fo

. You will find graphs everywhere you look!

Representing Graphs

How do we store and represent graphs in code?

Attendance ticket:
https /[tinyurl. com/106bGraDhs

Please don’t send this link to students who not here. It’s on your ho

https://tinyurl.com/106bGraphs

The Node struct

struct Node {
string data;
Node* next;

The Node struct

struct Node {
string data;
Node* next;

How would our data be different for each application?

The Node struct

struct Node {
string data;
Node* next;

How can we better represent our edges in graphs?

Approach 1. Adjacency List

Approach 1. Adjacency List

e We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Approach 1. Adjacency List

e We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Map< , Set< >>

Approach 1. Adjacency List

Set< >>

e We can represent a graph as a map Node |Adjacent to
from nodes to the collection of
nodes that each node is adjacent to.

Map< , Set< >>

Approach 1. Adjacency List

Set< >>
e We can represent a graph as a map Node |Adjacent to

from nodes to the collection of
nodes that each node is adjacent to. Q

Map< , Set< >>

Approach 1. Adjacency List

Set< >>
e We can represent a graph as a map Node |Adjacent to

from nodes to the collection of
nodes that each node is adjacent to. Q

Map< , Set< >>

Approach 1. Adjacency List

Set< >>

e We can represent a graph as a map Node |Adjacent to
from nodes to the collection of
nodes that each node is adjacent to.

00000

Approach 1. Adjacency List

e The approach we just saw is called an adjacency list in comes in a number of
different forms:
o Map<Node, Set<Node>>
o Map<Node, Vector<Node>>
o HashMap<Node, HashSet<Node>>

o Vector<Node>» <- in this case, the Node struct holds collection of
its adjacent neighbors

Approach 1. Adjacency List

e The approach we just saw is called an adjacency list in comes in a number of
different forms:
o Map<Node, Set<Node>>
o Map<Node, Vector<Node>>
o HashMap<Node, HashSet<Node>>

o Vector<Node>» <- in this case, the Node struct holds collection of
its adjacent neighbors

e The core idea is that we have some kind of mapping associating each node
with its outgoing edges (or neighboring nodes).

Approach 1. Adjacency List

e The approach we just saw is called an adjacency list in comes in a number of
different forms:
o Map<Node, Set<Node>>
o Map<Node, Vector<Node>>
o HashMap<Node, HashSet<Node>>

o Vector<Node>» <- in this case, the Node struct holds collection of
its adjacent neighbors

e The core idea is that we have some kind of mapping associating each node
with its outgoing edges (or neighboring nodes).

e How might you incorporate weights?

Approach 1. Adjacency List

e The approach we just saw is called an adjacency list in comes in a number of
different forms:
o Map<Node, Set« >>
o Map<Node, Vector« >>
o HashMap<Node, HashSet< >>

o Vector<Node>» <- in this case, the Node struct holds collection of
its adjacent neighbors

e The core idea is that we have some kind of mapping associating each node
with its outgoing edges (or neighboring nodes).

Approach 2: Adjacency Matrix

e We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Approach 2: Adjacency Matrix

e We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Approach 2: Adjacency Matrix

e We can also use a two-dimensional _Q Q ‘ ‘ ‘_

matrix to represent the relationships

in a graph.

Approach 2: Adjacency Matrix

e We can also use a two-dimensional _Q Q ‘ ‘ ‘_

matrix to represent the relationships

in a graph.

Approach 2: Adjacency Matrix

e We can also use a two-dimensional _Q Q ‘ ‘ ‘_
1

matrix to represent the relationships

in a graph.

Approach 2: Adjacency Matrix

e We can also use a two-dimensional _Q Q ‘ ‘ ‘_
1

matrix to represent the relationships

in a graph.

Approach 2: Adjacency Matrix

e We can also use a two-dimensional _Q Q ‘ ‘ ‘_
1 1

matrix to represent the relationships

in a graph.

Approach 2: Adjacency Matrix

e \We can also use a two-dimensional _Q Q ‘ ‘ ‘_
1 1 1

matrix to represent the relationships

in a graph.

Approach 2: Adjacency Matrix

e \We can also use a two-dimensional _Q Q ‘ ‘ ‘_
1 1 1

matrix to represent the relationships

in a graph.

Approach 2: Adjacency Matrix

e \We can also use a two-dimensional _Q Q ‘ ‘ ‘_
1 1 (2] 1

matrix to represent the relationships

in a graph.

Approach 2: Adjacency Matrix

e To add weights, store other numbers besides 1in the matrix.

e Adjacency matrices are beneficial when our graph isn’t sparse, i.e. there aren’t
a lot of 0Os. Otherwise, storing a mostly-Os matrix is not space efficient.

e Other benefits:
o Grid lookup is super fast!
o Storing weights is more straightforward than in the adjacency list.
o Computer hardware has been optimized for matrix math - so using a grid
can help us perform complex matrix operations for data analysis.

Graph Algorithms

Graph Algorithms

® There are out there.
o Check out this

https://en.wikipedia.org/wiki/Category:Graph_algorithms
https://qiao.github.io/PathFinding.js/visual/

Graph Algorithms

® There are out there.
o Check out this

e Some famous examples include:

https://en.wikipedia.org/wiki/Category:Graph_algorithms
https://qiao.github.io/PathFinding.js/visual/

Graph Algorithms

® There are out there.
o Check out this

e Some famous examples include:
o BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.

https://en.wikipedia.org/wiki/Category:Graph_algorithms
https://qiao.github.io/PathFinding.js/visual/

Graph Algorithms

® There are out there.
o Check out this

e Some famous examples include:
o BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.
o Kruskal's Algorithm: Find a minimum spanning tree from a given graph.

Cost:
1+3+5+4+1+6+2=22

https://en.wikipedia.org/wiki/Category:Graph_algorithms
https://qiao.github.io/PathFinding.js/visual/

Graph Algorithms

® There are out there.
o Check out this

e Some famous examples include:

o BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.

o Kruskal's Algorithm: Find a minimum spanning tree from a given graph.

o Topological Sort: "Sort" the nodes in a dependency graph in such a way that traversing the
nodes in order results in all dependencies being fulfilled at each point in time.

/,%\

B — N — N — ay—uen—ah N

___/_/
D

https://en.wikipedia.org/wiki/Category:Graph_algorithms
https://qiao.github.io/PathFinding.js/visual/

Graph Algorithms

There are out there.

(@)

Check out this

Some famous examples include:

(@)

(@)

@)

BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.
Kruskal's Algorithm: Find a minimum spanning tree from a given graph.

Topological Sort: "Sort" the nodes in a dependency graph in such a way that traversing the
nodes in order results in all dependencies being fulfilled at each point in time.

Traveling salesman: Given a map of cities and the distances between them, find the shortest
path that traverses all cities in the map.

https://en.wikipedia.org/wiki/Category:Graph_algorithms
https://qiao.github.io/PathFinding.js/visual/

Graph Algorithms

® There are out there.

(@)

Check out this

e Some famous examples include:

(@)

(@)

@)

BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.
Kruskal's Algorithm: Find a minimum spanning tree from a given graph.

Topological Sort: "Sort" the nodes in a dependency graph in such a way that traversing the
nodes in order results in all dependencies being fulfilled at each point in time.

Traveling salesman: Given a map of cities and the distances between them, find the shortest
path that traverses all cities in the map.

e Graphs can also be used in conjunction with machine learning algorithms to
accomplish cool things. Take CS224W to learn more!

https://en.wikipedia.org/wiki/Category:Graph_algorithms
https://qiao.github.io/PathFinding.js/visual/

Announcements

Announcements

e Assignment 5 revisions and Assignment 6 are due today at 11:59pm PDT. Remember that
this is a hard deadline, and there is no grace period!

e There is no official section this week, but keep an eye out for an email from your SL’s in
case they are hosting an optional section, or if the section time is being used for Final

Project presentations.

e Submit questions for tomorrow’s Ask Us Anything (also in this week’s
announcements). No lecture on Thursday so tomorrow is our last day of class.

e Tomorrow will be our last group OH (Kylie and Jenny will be therel).

https://docs.google.com/forms/u/3/d/e/1FAIpQLSd4Fx87uNEo9EMOfMeUsTDH_KtK3RkMAO6NsFs7oPAiD4cSJA/viewform?usp=send_form

Making our own projects!

#include "vector.h"

#include "vector.h"

O 'vector.h' file not found

#include "vector.h"

O 'vector.h' file not found

#include "vector.h"

O 'vector.h' file not found

GO g|e stanford lied to me how to sue??? X

The Standard
Template Library

INg namespac

What we know so far

o

C++ Standard Library

The cooler Daniel Judi
—

Dane'

1. Include your ADT

How do | use
STL ADTs?

A 5 step guide:

1. Include your ADT
a. #include <vector>

How do | use
STL ADTs?

A 5 step guide:

1. Include your ADT
a. #include <vector>

H oW d O I use 2. Write the ADT in lowercase

STL ADTs?

A 5 step guide:

1. Include your ADT
a. #include <vector>

H oW d O I use 2. Write the ADT in lowercase

a. vector<int> myVector;

STL ADTs?

A 5 step guide:

1. Include your ADT
a. #include <vector>

H oW d O I use 2. Write the ADT in lowercase

a. vector<int> myVector;

STL ADTS? 3. Putstd: in front of it

A 5 step guide:

Include your ADT
a. #include <vector>

H oW d O I use . Write the ADT in lowercase

a. vector<int> myVector;

STL ADTS? . Put std:: in front of it

a. std::vector<int> myVector;

A 5 step guide:

Include your ADT
a. #include <vector>

H oW d O I use . Write the ADT in lowercase

a. vector<int> myVector;

STL ADTS? . Put std:: in front of it

a. std::vector<int> myVector;

777

A 5 step guide:

Include your ADT
a. #include <vector>
Write the ADT in lowercase

HOW dO I use | a. vector<int> myVector;

Put std:: in front of it

STL ADTS? | a. std::vector<int> myVector;

7?07

A 5 step guide: I.Dorc.)fit!

Spot the difference!

What you want to do Stanford Vector<int> std::vector<int>
Create a new, empty vector Vector<int> vec; std::vector<int> vec;
Create a vector with n copies of 0 Vector<int> vec(n); std::vector<int> vec(n);
Create a vector with n copies of a value k Vector<int> vec(n, k), std::vector<int> vec(n, k);
Add a value k to the end of a vector vec.add(k); vec.push back(k);
Remove all elements of a vector vec.clear(); vec.clear();
Get the element at index i int kK = vec[i]; int kX = vec[i]; (does not bounds check)
Check size of vector vec.size(); vec.size();
Loop through vector by index 4 ff)jl ir?t.i.: 0;i<vec.size() ; f+o+rI (std::size_t i =0;i<vec.size();
Replace the element at index i vec[i] = k; vec[i] = Kk; (does not bounds check)

Table courtesy of Frankie Cerkvenik and Sathya Edamadaka!

Makefiles

How does our code actually compile?

Makefiles and cmake

A Makefile is the recipe for your build!
It tells the compiler:

e What files to include
e What dependencies they have
e What code to run to put it all together

targets: prerequisites
command
command
command

Makefiles and cmake

A Makefile is the recipe for your build!
It tells the compiler:

e What files to include
e What dependencies they have
e What code to run to put it all together

These can be a little manual — cmake abstracts a lot of it for you!

Example cmake file (from CS106L)

cmake_minimum_required(VERSION 3.0)
project(wikiracer)

set (CMAKE_CXX_STANDARD 17)
set (CMAKE_CXX_STANDARD_REQUIRED True)

find_package(cpr CONFIG REQUIRED)

adding all files
add_executable(main main.cpp wikiscraper.cpp.o error.cpp)

target_link_libraries(main PRIVATE cpr)

Example cmake file (from CS106L)

cmake_minimum_required(VERSION 3.0)
project(wikiracer)

set (CMAKE_CXX_STANDARD 17)
set (CMAKE_CXX_STANDARD_REQUIRED True)

find_package(cpr CONFIG REQUIRED)

adding all files
add_executable(main main.cpp wikiscraper.cpp.o error.cpp)

target_link_libraries(main PRIVATE cpr)

Take CS 107/107E next to learn more about compiling!

Leveling up classes

Speaking of vector<int>...

What’s up with <>?

When we make classes, we can initialize them in the constructor with some
parameters!

What’s up with <>?

When we make classes, we can initialize them in the constructor with some
parameters!

These have to have a certain type...

What’s up with <>?

When we make classes, we can initialize them in the constructor with some
parameters!

These have to have a certain type...

How can we make a class that can take in any type of parameters?

Template classes!

All of our favorite ADTs are template classes!
Pros:

e Can take in any type
e Generalized
e Easy for the client and the programmer

Template classes!

All of our favorite ADTs are template classes!
Pros:

e Can take in any type
e Generalized
e Easy for the client and the programmer

Cons:

e We don’t know how to make them yet??

Syntax

Instead of: Use:
e class ClassName {...} e template<class typeName> class
o FIXED_TYPE var; ClassName {...}

e typeName var;

Syntax

Instead of: Use:
e class ClassName {...} e template<class typeName> class
o FIXED_TYPE var; ClassName {...}

e typeName var;

Anywhere you use a fixed type, use typeName!

What about operators?

Want to learn more?

Take CST106L!

havenw@stanford.edu

Go forth and codel

What's next?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

—

Diagnostic

Life after CS106B/

algorithmic recursive
testing analysis problem-solving

